61 research outputs found

    Painterly Image Harmonization using Diffusion Model

    Full text link
    Painterly image harmonization aims to insert photographic objects into paintings and obtain artistically coherent composite images. Previous methods for this task mainly rely on inference optimization or generative adversarial network, but they are either very time-consuming or struggling at fine control of the foreground objects (e.g., texture and content details). To address these issues, we propose a novel Painterly Harmonization stable Diffusion model (PHDiffusion), which includes a lightweight adaptive encoder and a Dual Encoder Fusion (DEF) module. Specifically, the adaptive encoder and the DEF module first stylize foreground features within each encoder. Then, the stylized foreground features from both encoders are combined to guide the harmonization process. During training, besides the noise loss in diffusion model, we additionally employ content loss and two style losses, i.e., AdaIN style loss and contrastive style loss, aiming to balance the trade-off between style migration and content preservation. Compared with the state-of-the-art models from related fields, our PHDiffusion can stylize the foreground more sufficiently and simultaneously retain finer content. Our code and model are available at https://github.com/bcmi/PHDiffusion-Painterly-Image-Harmonization.Comment: Accepted by ACMMM 202

    Continuously Monitoring Alternative Shortest Paths on Road Networks

    Get PDF

    Comparing Alternative Route Planning Techniques: A Comparative User Study on Melbourne, Dhaka and Copenhagen Road Networks

    Get PDF
    Many modern navigation systems and map-based services do not only provide the fastest route from a source location s to a target location t but also provide a few alternative routes to the users as more options to choose from. Consequently, computing alternative paths has received significant research attention. However, it is unclear which of the existing approaches generates alternative routes of better quality because the quality of these alternatives is mostly subjective. Motivated by this, in this paper, we present a user study conducted on the road networks of Melbourne, Dhaka and Copenhagen that compares the quality (as perceived by the users) of the alternative routes generated by four of the most popular existing approaches including the routes provided by Google Maps. We also present a web-based demo system that can be accessed using any internet-enabled device and allows users to see the alternative routes generated by the four approaches for any pair of selected source and target. We report the average ratings received by the four approaches and our statistical analysis shows that there is no credible evidence that the four approaches receive different ratings on average. We also discuss the limitations of this user study and recommend the readers to interpret these results with caution because certain factors may have affected the participants' ratings.Comment: Extended the user study to also include the road networks of Dhaka and Copenhagen (the previous version only had Melbourne road network

    Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury

    Get PDF
    Schwann cells (SCs) hold promise for spinal cord injury (SCI) repair; however, there are limitations for its use as a lone treatment. We showed that acute inhibition of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) by bisperoxovanadium (bpV) was neuroprotective and enhanced function following cervical hemicontusion SCI. We hypothesized that combining acute bpV therapy and delayed SC engraftment would further improve neuroprotection and recovery after cervical SCI. Adult female Sprague-Dawley (SD) rats were randomly sorted into 5 groups: sham, vehicle, bpV, SC transplantation, and bpV+SC transplantation. SCs were isolated from adult green fluorescent protein (GFP)-expressing SD rats (GFP-SCs). 200 μg/kg bpV(pic) was administered intraperitoneally (IP) twice daily for 7 days post-SCI in bpV-treated groups. GFP-SCs (1×10(6) in 5 μl medium) were transplanted into the lesion epicenter at the 8th day post-SCI. Forelimb function was tested for 10 weeks and histology was assessed. bpV alone significantly reduced lesion (by 40%, p<0.05) and cavitation (by 65%, p<0.05) and improved functional recovery (p<0.05) compared to injury alone. The combination promoted similar neuroprotection (p<0.01 vs. injury); however, GFP-SCs alone did not. Both SC-transplanted groups exhibited remarkable long-term SC survival, SMI-31(+) axon ingrowth and RECA-1(+) vasculature presence in the SC graft; however, bpV+SCs promoted an 89% greater axon-to-lesion ratio than SCs only. We concluded that bpV likely contributed largely to the neuroprotective and functional benefits while SCs facilitated considerable host-tissue interaction and modification. The combination of the two shows promise as an attractive strategy to enhance recovery after SCI

    A high-resolution air temperature data set for the Chinese Tian Shan in 1979-2016

    Get PDF
    The Chinese Tian Shan (also known as the Chinese Tianshan Mountains, CTM) have a complex ecological environmental system. They not only have a large number of desert oases but also support many glaciers. The arid climate and the shortage of water resources are the important factors restricting the area's socioeconomic development. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for the Chinese Tian Shan (41.1814-45.9945 degrees N, 77.3484-96.9989 degrees E) from 1979 to 2016 based on a robust elevation correction framework. The data set was validated by 24 meteorological stations at a daily scale. Compared to original ERA-Interim temperature, the Nash-Sutcliffe efficiency coefficient increased from 0.90 to 0.94 for all test sites. Approximately 24% of the root-mean-square error was reduced from 3.75 to 2.85 degrees C. A skill score based on the probability density function, which was used to validate the reliability of the new data set for capturing the distributions, improved from 0.86 to 0.91 for all test sites. The data set was able to capture the warming trends compared to observations at annual and seasonal scales, except for winter. We concluded that the new high-resolution data set is generally reliable for climate change investigation over the Chinese Tian Shan. However, the new data set is expected to be further validated based on more observations. This data set will be helpful for potential users to improve local climate monitoring, modeling, and environmental studies in the Chinese Tian Shan. The data set presented in this article is published in the Network Common Data Form (NetCDF) at https://doi.org/10.1594/PANGAEA.887700. The data set includes 288 nc files and one user guidance txt file

    Plasma microRNAs as potential biomarkers for non-small-cell lung cancer

    Get PDF
    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Developing minimally invasive techniques that can diagnose NSCLC, particularly at an early stage, may improve its outcome. Using microarray platforms, we previously identified 12 microRNAs (miRNAs) the aberrant expressions of which in primary lung tumors are associated with early-stage NSCLC. Here, we extend our previous research by investigating whether the miRNAs could be used as potential plasma biomarkers for NSCLC. We initially validated expressions of the miRNAs in paired lung tumor tissues and plasma specimens from 28 stage I NSCLC patients by real-time quantitative reverse transcription PCR, and then evaluated diagnostic value of the plasma miRNAs in a cohort of 58 NSCLC patients and 29 healthy individuals. The altered miRNA expressions were reproducibly confirmed in the tumor tissues. The miRNAs were stably present and reliably measurable in plasma. Of the 12 miRNAs, five displayed significant concordance of the expression levels in plasma and the corresponding tumor tissues (all r>0.850, all P<0.05). A logistic regression model with the best prediction was defined on the basis of the four genes (miRNA-21, -126, -210, and 486-5p), yielding 86.22% sensitivity and 96.55% specificity in distinguishing NSCLC patients from the healthy controls. Furthermore, the panel of miRNAs produced 73.33% sensitivity and 96.55% specificity in identifying stage I NSCLC patients. In addition, the genes have higher sensitivity (91.67%) in diagnosis of lung adenocarcinomas compared with squamous cell carcinomas (82.35%) (P<0.05). Altered expressions of the miRNAs in plasma would provide potential blood-based biomarkers for NSCLC

    Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies

    Get PDF
    PMC3547021Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.JH Libraries Open Access Fun
    • …
    corecore